1.浙江大学建筑设计研究院有限公司
2.浙江工业大学工程设计集团有限公司
扫 描 看 全 文
毛阗, 章帆. 建筑光伏系统发电功率短期预测方法研究[J]. 智能建筑与智慧城市, 2023,(4):126-128.
MAO Tian, ZHANG Fan. Study on Short-term Forecasting Method of Building Photovoltaic System Power[J]. 2023,(4):126-128.
毛阗, 章帆. 建筑光伏系统发电功率短期预测方法研究[J]. 智能建筑与智慧城市, 2023,(4):126-128. DOI: 10.13655/j.cnki.ibci.2023.04.037.
MAO Tian, ZHANG Fan. Study on Short-term Forecasting Method of Building Photovoltaic System Power[J]. 2023,(4):126-128. DOI: 10.13655/j.cnki.ibci.2023.04.037.
为降低光伏系统发电功率的预测误差,增强预测结果的精准度,文章对建筑光伏系统发电功率短期预测方法研究,进行数据采集及校正,建立归一化预测矩阵,以此为基础,构建BP神经网络预测模型,以Mallat重构处理实现发电功率的短期预测。最终预测结果表明:与传统多时间尺度预测组和传统分布式光伏预测组相比,神经网络光伏预测组最终得出的预测误差相对较小,且均控制在0.15以下,表明其对系统的预测效果更佳,具有实际应用价值。
In order to reduce the prediction error of the photovoltaic system power and enhance the accuracy of the prediction results, this paper studies the short-term prediction method of the building photovoltaic system power, carries out data acquisition and correction, and establishes a normalized prediction matrix. Based on this, it constructs the BP neural network prediction model and realizes the short-term prediction of power by Mallat reconstruction processing. The final prediction results show that compared with the traditional multi-time scale forecasting group and the traditional distributed photovoltaic forecasting group, the final prediction errors obtained by the neural network photovoltaic prediction group are relatively small, and all of them are controlled below 0.15, it is shown that the prediction effect of the neural network photovoltaic prediction group to the system is better and it has practical application value.
建筑光伏系统光伏发电功率短期预测预测方法
building photovoltaic systemphotovoltaic powershort-term forecastingforecasting method
柴华.基于云图数据与深度学习的光伏发电功率超短期预测研究[D].北京:华北电力大学,2021.
苏莘.基于数据重构和复合残差校正模型的短期光伏发电功率预测研究[D].江苏:中国矿业大学,2021.
陈博.计及天气与气象因子关联度的短期光伏发电功率预测[D].河北:燕山大学,2021.
0
浏览量
5
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构