1.山东建筑大学信息与电气工程学院
2.山东省智能建筑技术重点实验室
扫 描 看 全 文
王健, 李红民, 张家瑞, 等. 结构健康监测研究进展及增加建筑智能化程度[J]. 智能建筑与智慧城市, 2022,(3):124-127.
Jian WANG, Hong-min LI, Jia-rui ZHANG, et al. A Review of Structural Health Monitoring and Increasing the Degree of Building Intelligence[J]. 2022,(3):124-127.
王健, 李红民, 张家瑞, 等. 结构健康监测研究进展及增加建筑智能化程度[J]. 智能建筑与智慧城市, 2022,(3):124-127. DOI: 10.13655/j.cnki.ibci.2022.03.033.
Jian WANG, Hong-min LI, Jia-rui ZHANG, et al. A Review of Structural Health Monitoring and Increasing the Degree of Building Intelligence[J]. 2022,(3):124-127. DOI: 10.13655/j.cnki.ibci.2022.03.033.
综述了结构健康监测系统的部分应用,分析了当前公共建筑结构健康监测中的一些重点难点。在此基础上,从智能建筑发展的角度提出了一套大型公共建筑健康监测系统的设计流程,其中强调了以传感器布置、损伤识别和安全评估作为当前研究重点,使整个结构的监测与安全评估有机结合,从而为智慧城市的发展奠定基础,为智慧城市的发展奠定基础。
In this paper, part of the applications of the structural health monitoring system are summarized, and some key points and difficulties in the current structural health monitoring of public building are analyzed. On this basis, a set of design process of a large-scale public building health monitoring system is proposed from the perspective of the development of intelligent buildings, which emphasizes the current research focus on sensor arrangement, damage identification and safety assessment, so that the monitoring and safety assessment of the entire structure are organically combined, so as to increase the intelligence of intelligent buildings and lay the foundation for the development of smart cities.
智能建筑健康监测系统安全评估智慧城市
intelligent buildingshealth monitoring systemssafety assessmentssmart cities
林志森.智能建筑的开放性探析[J].四川建筑科学研究,2005(3):109-111.
Raeisi F, Algohi B, Mufti A, et al. Reducing carbon dioxide emissions through structural health monitoring of bridges[J]. Journal of Civil Structural Health Monitoring, 2021, 11(3): 679-689.
Ou J, Li H. Structural health monitoring in mainland China: review and future trends[J]. Structural health monitoring, 2010,9(3): 219-231.
Weijtjens W,Verbelen T,De Sitter G, et al.Foundation structural health monitoring of an offshore wind turbine—A full-scale case study[J]. Structural Health Monitoring, 2016,15(4): 389-402.
Roghaei M, Zabihollah A. An efficient and reliable structural health monitoring system for buildings after earthquake[J]. APCBEE procedia, 2014, 9: 309-316.
Pierdicca A, Clementi F, Mezzapelle P, et al. One-year monitoring of a reinforced concrete school building: Evolution of dynamic behavior during retrofitting works[J]. Procedia engineering, 2017(199): 2238-2243.
Zhang F L, Yang Y P, Xiong H B, et al. Structural health monitoring of a 250‐m super‐tall building and operational modal analysis using the fast Bayesian FFT method[J].Structural Control and Health Monitoring, 2019,26(8): e2383.
Saisi A, Gentile C, Ruccolo A. Pre-diagnostic prompt investigation and static monitoring of a historic bell-tower[J]. Construction and Building Materials, 2016, 122: 833-844.
Kammer D C. Sensor placement for on-orbit modal identification and correlation of large space structures[J]. Journal of Guidance, Control, and Dynamics, 1991, 14(2): 251-259.
Guyan R J. Reduction of stiffness and mass matrices[J].AIAA journal,1965, 3(2): 380-380.
吴子燕,何银,简晓红.基于损伤敏感性分析的传感器优化配置研究[J].工程力学, 2009(5):239-244.
Kim H B, Park Y S. Sensor placement guide for structural joint stiffness model improvement[J]. Mechanical Systems and Signal Processing, 1997, 11(5): 651-672.
Shi Z Y, Law S S, Zhang L M. Optimum sensor placement for structuraldamage detection[J]. Journal of Engineering Mechanics, 2000, 126(11): 1173-1179.
Penny J E T, Friswell M I, Garvey S D. Automatic choice of measurement locations for dynamic testing[J]. AIAA journal, 1994, 32(2): 407-414.
Mahjoubi S, Barhemat R, Bao Y. Optimal placement of triaxial accelerometers using hypotrochoid spiral optimization algorithm for automated monitoring of high-rise buildings[J]. Automation in Construction, 2020(118): 103273.
Sofi A, Regita J J, Rane B, et al. Structural health monitoring using wireless smart sensor network–An overview[J]. Mechanical Systems and Signal Processing, 2022(163): 108113.
Chong C Y, Kumar S P. Sensor networks: evolution, opportunities, and challenges[J]. Proceedings of the IEEE, 2003, 91(8): 1247-1256.
Zhao S, Kang F, Li J, et al. Structural health monitoring and inspection of dams based on UAV photogrammetry with image 3D reconstruction[J]. Automation in Construction, 2021(130): 103832.
Sohn H, Farrar C R. Damage diagnosis using time series analysis of vibration signals[J]. Smart materials and structures, 2001, 10(3): 446.
赵一男,公茂盛,杨游.结构损伤识别方法研究综述[J].世界地震工程,2020,36(2):73-84.
Huang Y, Beck J L, Li H. Multitask sparse Bayesian learning with applications in structural health monitoring[J]. Computer‐Aided Civil and Infrastructure Engineering, 2019, 34(9): 732-754.
刘涛,李爱群,缪长青,李枝军.基于数据融合的结构损伤识别方法研究[J].工程力学,2008(1):16-21.
Gabriele S, Valente C. An interval-based technique for FE model updating[J]. International Journal of Reliability and Safety, 2009, 3(1-3): 79-103.
Tang Z, Bao Y, Li H. Group sparsity-aware convolutional neural network for continuous missing data recovery of structural health monitoring[J]. Structural Health Monitoring, 2021, 20(4): 1738-1759.
Bao Y , Chen Z , Wei S , et al. The State of the Art of Data Science and Engineering in Structural Health Monitoring[J]. Engineering, 2019,5(2):234-242.
Melhem H G, Aturaliya S. Bridge condition rating using an eigenvector of priority settings[J]. Computer‐Aided Civil and Infrastructure Engineering, 1996, 11(6): 421-432.
Kawamura K, Miyamoto A. Condition state evaluation of existing reinforced concrete bridges using neuro-fuzzy hybrid system[J]. Computers & structures, 2003, 81(18-19): 1931-1940.
López J J O, Reyes L V, Vera C O. Structural health assessment of a R/C building in the coastal area of Concepción, Chile[J]. Procedia engineering, 2017(199): 2214-2219.
Wang Y W, Zhang C, Ni Y Q, et al. Bayesian probabilistic assessment of occupant comfort of high-rise structures based on structural health monitoring data[J]. Mechanical Systems and Signal Processing, 2022(163): 108147.
0
浏览量
5
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构